摘要:针对半导体物理课程教学中存在的主要问题,探讨基于电子科学与技术专业的知识结构与教学体系。根据半导体物理课程的特点,优化整合教学内容,丰富教学手段,结合科技前沿与研究热点,激发学生学习的积极性,有效提高课堂教学效果。
关键词:半导体物理;教学改革;教学效果
作者简介:刘德伟(1979-),男,河南濮阳人,郑州轻工业学院物理与电子工程学院,讲师;李涛(1977-),男,河南淮阳人,郑州轻工业学院物理与电子工程学院,讲师。(河南 郑州 450002)
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)34-0085-02
半导体物理是半导体科学的理论基础,是电子科学与技术、微电子学等专业重要的专业基础课,其教学质量直接关系到后续课程的学习效果以及学生未来的就业和发展。然而,由于半导体物理的学科性很强,理论较为深奥,涉及知识点多,理论推导繁琐,学生在学习的过程中存在一定的难度。因此,授课教师必须在充分理解半导体物理,熟悉半导体工艺和集成电路设计的基础上,结合教学实际中存在的问题,优化整合教学内容,丰富教学手段,探索教学改革措施,培养学生的学习兴趣,提高半导体物理课程的教学质量。
一、半导体物理课程特点及教学中存在的主要问题
郑州轻工业学院采用的教材为刘恩科主编的《半导体物理学》(第七版,电子工业出版社),该教材是电子科学与技术类专业精品教材。[1]结合教材特点与教学实践,半导体物理课程教学过程中存在的主要问题与不足[2]可归纳如下:
1.教材内容知识点多,理论性强
半导体物理课程前五章为理论基础部分,主要讲述了半导体中的电子状态、杂质和缺陷能级、载流子的统计分布、半导体的导电性与非平衡载流子,在此基础上阐述了电子有效质量、费米能级、迁移率、非平衡载流子寿命等基本概念;分析了状态密度、分布函数、载流子浓度以及迁移率与杂质浓度、温度的关系。课程涉及理论知识较深,易混淆知识点较多,数学公式推导复杂,很多基本概念及数学公式要求学生掌握量子力学、固体物理、热力学统计物理和高等数学等多门基础学科的理论知识。因此,学生在前期学习中,在相关知识点上难以衔接,对相关理论的掌握存在一定困难。
2.传统教学模式难以理论联系实际
半导体物理课程后八章主要介绍了半导体基本器件的结构与性能,半导体的光、电、热、磁等基本性质。如pn结电流电压特性及电容、击穿电压与隧道效应、肖特基接触与欧姆接触;半导体表面与MIS结构、表面电场对pn结性能的影响;半导体异质结构及半导体激光器等。由于这部分内容主要阐述半导体的实际应用,仅仅从课本上学习相关知识,难以理论联系实际,对于没有接触过半导体制备工艺的学生而言,就会觉得内容枯燥,课堂乏味。
3.教材内容无法追踪科技前沿
现代半导体技术日新月异,发展迅速,例如在半导体照明、半导体激光器、探测器、太阳能电池等领域都获得了重大研究成果,研究领域不断拓展,新的理论不断涌现,与化学、医学、生物等学科之间的交叉和渗透越来越强,极大地丰富了半导体物理的教学内容。而半导体物理教材内容的更新相对较慢,因此,如何在有限的课时内既要讲授教材内容,又要穿插相关科技前沿是一个值得深入探讨的问题。
二、半导体物理课程教学改革措施
基于以上分析,半导体物理课程对授课教师要求较高,如何在有限的课堂教学过程中将大量的知识讲解清楚,需要教师积极探索新的教学模式,针对课程特点与教学现状,通过不断实践克服存在的问题与不足,采用多样化的教学手段,优化整合教学内容,狠抓教学环节,使学生较好地理解并掌握相关知识,为后续课程的学习打下良好的基础。[3]
1.优化整合教学内容
由于现代半导体技术发展极为迅速,研究方向不断拓展,相关知识更新较快。因此,授课教师应与时俱进,关注科技前沿与研究热点,合理安排教学内容。结合电子科学与技术专业其它课程的教学内容,在保持课程知识结构与整体系统性的同时,对教学内容进行合理取舍,压缩与其他课程重叠的内容,删除教材中相对陈旧的知识,密切跟踪科技前沿与研究热点,适当增加新的理论,补充重要的半导体技术发展史,激发学生的学习热情,培养学生的科学精神。例如压缩教材中第一章固体物理课程已经详细讲解过的能带理论内容,将授课时间由原来的8学时压缩至6学时;在讲解半导体光学特性时,结合半导体光电子学的研究前沿,增加该部分内容所涉及的研究领域与最新技术,如半导体超晶格、量子阱等方面的内容;在讲述MIS结构的C-V特性时,补充C-V特性的研究意义,介绍半导体表面特性对集成芯片性能的影响,鼓励学生查阅总结利用C-V特性研究半导体表面的方法;在讲授半导体元器件的结构及性能时,适当补充半导体器件的制备工艺,播放一些半导体器件的制备视频,让学生结合某种半导体器件分析其结构与性能;在讲解半导体异质结构时,先让学生了解pn结种类,然后对比同质结与异质结的异同,最后让学生掌握异质结的电流电压特性,通过增加半导体激光器的发展史,即从第一支同质结半导体激光器只能在低温下发射脉冲激光到现在的异质结激光器的优异性能,让学生充分认识到半导体物理是现代半导体技术发展的理论基础,是科技创新的力量源泉。通过介绍科技前沿与研究热点,指导学生查阅相关文献,扩大学生的知识面,提高学生学习的积极主动性。
2.突出重点,分化难点,强调基本概念与物理模型
半导体物理课程涉及到的基本概念和物理模型较多,仅凭教材中的定义理解这些概念和模型,学生很难完全掌握。在讲解深奥的物理模型时,教师应运用恰当的类比,通过生动形象的事例对比分析,加深学生对物理模型的理解,增加学生的学习兴趣。例如教材中半导体载流子浓度的计算既是难点又是重点,学习中涉及到状态密度、玻尔兹曼分布函数、费密分布函数以及载流子浓度等为较容易混淆的概念。为了帮助学生理解,教师可以通过教学楼里面的学生人数与半导体中的电子数目进行类比:不同楼层的教室对应不同的能带,教室座位数对应能态的数目,教室的学生人数就相当于半导体中的电子数目,这样,计算半导体电子浓度的问题就与计算教室单位空间内学生人数的问题非常类似。通过这种生动形象的类比,学生很容易明白半导体中的能态密度就相当于教室单位空间的座位数,而半导体中的电子在能级上的占据几率就对应于教室内学生的入座情况。半导体中的电子在能级上的占据概率需要满足波尔兹曼分布函数或费米分布函数,而分布函数的确定取决于费米能级的位置,当分布函数确定后,单位能量间隔内的电子数目就可以通过简单的微积分计算出来。
另外,半导体物理课程中理论推导和数学上的近似处理较多,繁琐的公式推导增加了学生对物理模型的理解。如果教师在教学过程中能适当地把物理模型和公式推导分开,正确处理两者之间的关系,分别从物理和数学两方面寻找攻克这些难点的途径,使学生在彻底理解物理模型的基础上掌握理论推导。例如教材中有关n型半导体载流子浓度的内容安排如下:首先根据杂质半导体的电中性条件,推导出一个包含费米能的表达式,然后根据杂质电离情况分为低温弱电离区、中间电离区、强电离区、过渡区以及高温本征激发区,最后再根据不同电离区的特点进行讨论与近似处理。所涉及到的物理模型相对简单,但分区讨论和近似处理部分篇幅较长。如果运用传统教学模式,学生很容易沉浸在复杂的数学公式推导之中,难以透彻理解物理模型。如果教师在授课过程中先让学生了解该部分内容的整体安排,理解物理模型,再分析各温区的主要特点,最后总结规律,通过数学推导得出结论,就能很好地提高教学效果。
3.温故知新,适时比较,加强各章节之间的联系
对于课堂上刚刚讲授过的知识,学生并不一定能够完全掌握,此时教师应该结合半导体物理课程的特点,在教学过程中做到温故知新,适时比较,加强不同章节之间知识点的联系。例如pn结是半导体器件的基本单元,如日常生活中常见的激光器、LED、整流器、调制器、探测器、太阳能电池等。在讲授该章内容时,如果教师以pn结为主线将教材中不同章节之间的内容有机联系起来,学生就会从整体上进一步了解半导体物理课程的教学内容。只有在教学过程中不断加强各章节知识点之间的联系,学生才能完全掌握半导体器件的基本原理,为以后从事半导体行业打下坚实的基础。再如所选教材中有关半导体载流子浓度的计算,分为非简并半导体和简并半导体两种情况。在讲述后者时,教师通过对比分析非简并半导体和简并半导体在概念上有何异同,再引导学生比较简并半导体与非简并半导体载流子浓度的计算公式,学生就会意识到二者的主要区别就是分布函数不同,在计算简并半导体载流子浓度时,虽然分布函数替换后导致积分变复杂,但只是数学处理的方法不同,两者的物理思想却完全一致。通过这样的比较学习,学生对非简并半导体与简并半导体以及玻尔兹曼分布函数与费米分布函数的理解就会更加深入。
三、结束语
通过以上教学改革措施,培养了学生的学习兴趣,增加了学生的学习积极性,提高了半导体物理课程的课堂教学效果,为学生后续专业课程的学习奠定了扎实的基础。
参考文献:
[1]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2011.
[2]马铁英,孙一翎,沈为民,等.“半导体物理”重点课程建设与教学探讨[J].科技信息,2009,(5):139.
[3]刘秋香,王银海,赵韦人,等.“半导体物理学”课程教学实践与探索[J].广东工业大学学报(社会科学版),2010,(10):87-88.
(责任编辑:王意琴)